Detailed Information (Building Level)

- **Building ID**:

- Are architectural/structural drawings available? If yes, collect it as a hard copy or take a photo.
 - Yes, take a hard copy or take a good resolution photo
 - No
 - If no, who has the architectural/structural drawings?
 - Specify: __________________________
 - Don’t know

OU P0. Building Category

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBM</td>
<td>Load bearing masonry</td>
</tr>
<tr>
<td>RC</td>
<td>Reinforced concrete</td>
</tr>
<tr>
<td>SF</td>
<td>Steel framed</td>
</tr>
<tr>
<td>TF</td>
<td>Timber framed</td>
</tr>
<tr>
<td>Mixed Systems</td>
<td></td>
</tr>
<tr>
<td>Under Construction</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

Specify: __________________________

OU P1. Main Structural System

If LBM:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Earthen blocks or compressed stabilized soil blocks in mud mortar</td>
</tr>
<tr>
<td>UCM/URM1</td>
<td>Dry rubble (or field) stone masonry</td>
</tr>
<tr>
<td>UCM/URM2</td>
<td>Rubble (or field) stone in mud mortar</td>
</tr>
<tr>
<td>UCM/URM3</td>
<td>Dressed stone in mud mortar</td>
</tr>
<tr>
<td>UCM/URM4</td>
<td>Rectangular block (brick, concrete block) in mud mortar</td>
</tr>
<tr>
<td>UCM/URM5</td>
<td>Rubble (or field) stone in cement mortar walls</td>
</tr>
<tr>
<td>UCM/URM6</td>
<td>Dressed (or field) stone in cement mortar</td>
</tr>
<tr>
<td>UCM/URM7</td>
<td>Rectangular block in cement mortar</td>
</tr>
<tr>
<td>CM</td>
<td>Rectangular block in cement mortar with RC confinement</td>
</tr>
<tr>
<td>RM</td>
<td>Rectangular block in cement mortar with steel reinforcement</td>
</tr>
<tr>
<td>SFM1</td>
<td>Lightweight gravity steel frame with URM walls</td>
</tr>
<tr>
<td>SFM2</td>
<td>Lightweight gravity steel frame with RM, CM or precast walls</td>
</tr>
<tr>
<td>TFM</td>
<td>Lightweight gravity timber frame with URM walls</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

Specify: __________________________
If RC:
- RC1: Reinforced concrete moment frame with/without in-fill walls that do not contribute to lateral stiffness
- RC2: Reinforced concrete frame with in-fill walls as stiffening element
- RC3: Reinforced concrete short column frame
- RC4: Reinforced concrete combined or dual system
- RC5: Non-engineered reinforced concrete frame
- RC6: Prefabricated reinforced concrete system
- OTHER Specify:___

If SF:
- SF1: Steel moment resisting framed structure with masonry infill walls
- SF2: Steel moment resisting framed structure with lightweight infill panels
- SF3: Steel moment resisting framed structure with braces
- OTHER Specify:___

If TF:
- TF: Timber frame
- OTHER Specify:___

If mixed systems:
- LBM/RC
- LBM/SF
- LBM/TF
- RC/SF
- RC/TF
- SF/TF
- OTHER Specify:___

If under construction:
- Others (specify):___

If other:
- Others (specify):___

OU P2. HEIGHT RANGE

No. of stories
m
Total height

OU P3. SEISMIC DESIGN LEVEL

Previous work is needed to inform this parameter (collect technical drawings or MoE/local expert experiences on local construction practice).

Building construction year (aprox.)

Construction responsible
- CR1: National government
- CR2: Subnational government
- CR3: NGO or donors
- CR4: Community
- CR0: No information
- OTHER Specify:___
Presence of seismic enhancement measures:

If LBM, LBM/RC, LBM/SF, LBM/TF:
- Evidence of internal vertical and/or horizontal reinforcement in masonry walls (already a typology i.e. RM)
- Evidence of vertical and/or horizontal confining RC elements at distances no more than about 4 m (already a typology i.e. CM)
- Presence (and connection to wall) of gravity columns (timber, steel, RC) at corners
- Presence of horizontal ring beam (timber, RC or steel) at floor level for box action
- Presence of horizontal ring beam (timber, RC or steel) well connected to the floor/roof structure
- Presence of sill band at window level
- Presence of light material gable walls (wooden planks or CGI sheet) in LBM buildings
- Presence of ties, anchors in the wall to floor/roof connection
- Presence of quoin in masonry structures at the corners
- Buttress in masonry walls with long panel lengths
- Others (specify): None

If RC, LBM/RC, RC/SF, RC/TF:
- Infill walls or parapets or facade components isolated from the structure
- Infill walls or parapets or facade components with evidence of internal reinforcement or confinement or effective connection to the structure
- Stronger columns with respect to beams
- Columns with minimum dimension greater or equal to 30 cm.
- Others (specify): None

If SF, LBM/SF, RC/SF, SF/TF:
- Vertical and horizontal continuous elements with strong cross sections and good vertical and horizontal alignment
- Presence of uniformly distributed braces with strong cross sections (no wrapping or excessive deflections)
- Connections with engineering treatment (sufficient number of bolts and adequately distributed, continuous and good quality of welding, etc.)
- Others (specify): None

If TF, LBM/TF, RC/TF, SF/TF:
- Vertical elements well distributed, uniform and strong cross section, and good vertical alignment
- Presence of uniformly distributed braces
- Good quality of connections and presence of hold downs and specific connecting devices such as steel plates, bolts or similar
- Others (specify): None

P4. DIAPHRAGM TYPE

Roof

Type of structure:
- RC solid slab
- RC two way joist slab
- RC one-way joist in longitudinal direction
- RC one-way joist in transversal direction
- Timber framed structure without concrete slab
- Steel framed structure with concrete slab
Steel framed structure without concrete slab
- Other (specify):___

Connection to lateral load resisting system
- Monolithic or embedded
- Resting over lateral resisting system
- Other (specify):___

Covering
- Heavy
- Light

Floors
Type of structure
- RC solid slab
- RC two way joist slab
- RC one-way joist in longitudinal direction
- RC one-way joist in transversal direction
- Timber structure
- Steel structure
- Other (specify):___

Connection to lateral load resisting system
- Monolithic or embedded or anchored
- Resting over lateral resisting system
- Other (specify):___

OU PS. STRUCTURAL IRREGULARITY

Horizontal Irregularity
- Rectangular
- L-shaped
- T-shaped
- H-shaped
- U-shaped
- Asymmetrical
- Other (specify):___

Vertical Irregularity
- Soft story
- Variation in story height
- Variation in story mass and/or stiffness
- Setback irregularity
- None

1st Story - footprint
- Total length, X (m)
- Total length, Y (m)
- Total no. of bays in X
- Total no. of bays in Y
P6. LBM: WALL PANEL LENGTH, RC: SPAN LENGTH

<table>
<thead>
<tr>
<th>LBM, LBM/RC, LBM/SF, LBM/TF:</th>
<th>Maximum wall length between adjacent restricted borders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wall thickness (if varying, specify)</td>
</tr>
<tr>
<td>RC, SF, TF, RC/SF, RC/TF, SF/TF:</td>
<td>Maximum bay length between columns (if SFM or TFM)</td>
</tr>
</tbody>
</table>

P7. LBM: WALL OPENINGS, RC: PIER TYPE

<table>
<thead>
<tr>
<th>LBM, LBM/RC, LBM/SF, LBM/TF:</th>
<th>Typical size of window opening width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical size of window opening height</td>
</tr>
<tr>
<td></td>
<td>Typical size of door opening width</td>
</tr>
<tr>
<td></td>
<td>Typical size of door opening height</td>
</tr>
<tr>
<td>RC, SF, TF, RC/SF, RC/TF, SF/TF:</td>
<td>Typical size of window opening width</td>
</tr>
<tr>
<td></td>
<td>Typical size of window opening height</td>
</tr>
<tr>
<td></td>
<td>Typical size of door opening width</td>
</tr>
<tr>
<td></td>
<td>Typical size of door opening height</td>
</tr>
<tr>
<td></td>
<td>Typical column width</td>
</tr>
<tr>
<td></td>
<td>Typical column depth</td>
</tr>
<tr>
<td></td>
<td>Typical beam width</td>
</tr>
<tr>
<td></td>
<td>Typical beam depth</td>
</tr>
</tbody>
</table>

P8. FOUNDATION TYPE

Previous work is needed to inform this parameter
(collect technical drawings or MoE/local expert experiences on typical construction practice and soil type)

<table>
<thead>
<tr>
<th>Foundation structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced concrete isolated spread footing</td>
<td></td>
</tr>
<tr>
<td>Reinforced concrete combined footing</td>
<td></td>
</tr>
<tr>
<td>Reinforced concrete strip footing</td>
<td></td>
</tr>
<tr>
<td>Reinforced concrete mat footing</td>
<td></td>
</tr>
<tr>
<td>Stonework strip footing</td>
<td></td>
</tr>
<tr>
<td>Brickwork strip footing</td>
<td></td>
</tr>
<tr>
<td>Other (specify):</td>
<td></td>
</tr>
<tr>
<td>Don't know</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard rock</td>
<td></td>
</tr>
<tr>
<td>Medium soil</td>
<td></td>
</tr>
<tr>
<td>Soft clay</td>
<td></td>
</tr>
<tr>
<td>Other (specify):</td>
<td></td>
</tr>
</tbody>
</table>
9. SEISMIC POUNDING RISK

G9. Minimum 1 photo showing the two adjacent buildings and the space between them (if yes)

Yes
No

If yes:

Minimum building separation

m

Height of the shorter building

m

10. SEISMIC RETROFITTING

Previous work is needed to inform this parameter (collect technical drawings or MoE/local experts experience).

G10. Minimum 2 photos for retrofitting details (if retrofitted)

Yes
No

If no:

Year of retrofitting (if retrofitted)

What was the retrofitting intervention?

Who has retrofitted the school?

11. STRUCTURAL HEALTH CONDITION

Check the type of critical condition observed:

- Structural cracking (walls and/or columns or beams)
- Corner separation
- Foundation settlement
- Corrosion of steel rebar/members
- Poor quality of materials in lateral load resisting elements (wall or frame elements)
- Poor quality of construction process in lateral load resisting elements (wall or frame elements)
- Poor quality of construction process in floor or roof elements
- Poor quality of materials in floor or roof elements
- Structural deflection
- Masonry efflorescence
- Covering or plaster cracking/detachment
- Other (specify): ___

None

12. VULNERABLE NON-STRUCTURAL COMPONENTS

Parapets

Fair
Good
Poor
Nor applicable
<table>
<thead>
<tr>
<th>Component</th>
<th>Fair</th>
<th>Good</th>
<th>Poor</th>
<th>Nor applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhangs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof coverings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceilings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bookshelves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (specify):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKETCH OF THE BUILDING
Make hand sketches of the followings in the specified area, in red specify the retrofitting if it exists.
(Record key plan dimensions, including length, width, distance between columns/bays/transversal load bearing walls)

Horizontal plan
Vertical elevation long direction
Vertical elevation short direction

COMMENTS
Specify any additional observations of the building structure which can affect structural performance

