Main Structural System:……………………………………………….………

Height Range:……………………….…...…………………………...………

Seismic Design Level:…………….……….………………………...………

This is an intervention on horizontal structure (i.e. roof) and is applied to the poorly built roofs that are made up of steel or timber joists. These roofs lack in-plane stiffness due to the poorly connected joints and absence of diagonal elements.

As an intervention, diagonal bracings (timber or steel elements depending on the material or existing roof structure) are installed to improve the in-plane stiffness of the roof structure. These bracings should be connected well to the rafters and purlins at the joints using steel straps and/or nails. Furthermore, if the existing connections at joints are not adequate or deteriorated, these should also be strengthened using straps and/or nails. For more information on roof strengthening, refer to NRA (2017).

ILLUSTRATIVE FIGURES:

Light steel roof structure in an LBM school building in Nepal (Copyright: The World Bank).

Illustration of improvement of joints in timber roof structures using straps and nails. (Reproduced from NRA, 2017).

Illustration of improvement of flexible diaphragm type roof structures (steel or timber structure) using diagonal X bracings. Red colored elements show the retrofitting intervention.

EXISTING STRUCTURAL DEFICIENCIES:

- Timber or Steel roof structure with rafters and purlins only (no diagonal bracing); - Poorly connected joints; - Limited in-plane strength/stiffness of roof structure

STRUCTURAL IMPROVEMENTS AFTER STRENGTHENING:

- In-plane stiffness of the roof is improved.
- Global seismic behavior of building is improved (because of the rigidity of stiffer roof).
- Roof structure vulnerability is reduced.

STRENGTHENING INTERVENTION DESCRIPTION:

This is a solution for the deficiencies identified above. The intervention is designed to improve the overall structural integrity of the roof system, thereby enhancing its performance under seismic loads.

APPLICABLE BUILDING TYPES:

<table>
<thead>
<tr>
<th>Taxonomy Parameters</th>
<th>A</th>
<th>UCM-URM</th>
<th>CM</th>
<th>RM</th>
<th>SFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height Range</td>
<td>Low (LR)</td>
<td>Medium (MR)</td>
<td>High (HR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic Design Level</td>
<td>Poor (PD)</td>
<td>Low (LD)</td>
<td>Medium (MD)</td>
<td>High (HD)</td>
<td></td>
</tr>
<tr>
<td>Diaphragm Type</td>
<td>Flexible</td>
<td>Rigid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOAD BEARING MASONRY BUILDINGS

STRENGTHENING INTERVENTION:

ROOF STRENGTHENING

LOAD BEARING MASONRY BUILDINGS

VULNERABILITY REDUCTION SOLUTIONS
PRECAUTIONS AND LIMITATIONS:

This intervention requires skilled carpenters. Roof cladding needs to be removed and rebuilt. This strengthening can be done together with roof-to-wall connection improvement works.

REFERENCES:

Notes:

- The design details and figures shown here are for illustration purpose only.
- The authors do not assume any responsibility for the consequences of adopting the proposed strengthening solution.
- Experienced structural engineers have to design (dimensions, details and material specifications) and supervise the interventions for each application case.