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This is a guidance note for World Bank task 
teams seeking to use artificial intelligence (AI) 
technology to support field data collection 
activities for project preparation and 
implementation. The note stems from an ongoing 
school infrastructure-related project under the 
Global Program for Safer Schools (GPSS). Rather 
than being a comprehensive AI technical document, 
the note describes the key factors to be considered 
by task teams during project preparation and 
implementation, with potential opportunities and 
benefits as well as challenges and risks. The note 
aims to guide task teams in support of clients 
with field data collection activities, in either Bank-
executed trust funds (BETF) or client-executed trust 
funds (CETF) projects.

Innovations are needed in field data collection 
methods—not only to improve project efficiency 
but also to enable continuous operations under 
mobility restrictions, such as in post-disaster or 
fragility, conflict, and violence (FCV) contexts 
and during the ongoing COVID-19 pandemic. In 
most cases, field data collection is the necessary 
initial step in identifying the baseline for project 
preparation and implementation because of the lack 
of data in developing countries. Such data collection 
is usually to be conducted by specialists with 
necessary technical understanding to ensure the 
completeness and quality of the data collected. In 
developing countries with limited technical capacity, 
this leads to the need for procuring, training, 
and mobilizing qualified specialists on the field 
including remote areas. This can be costly and time-
consuming and sometimes result in data quality 
issues when training is not sufficient. Such field data 
collection activities can be even more challenging 
when it comes to post-disaster or FCV contexts 
due to mobility restrictions. Given the current health 
risks and travel limitations in most countries posed 
by COVID-19, the need to change the traditional 
methods of field data collection has become even 
more pressing. 

1
Objective of the Note
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The recent advances in AI have provided the 
opportunity to address such needs, through 
augmenting expert knowledge and widening 
the spectrum of data format to inform project 
preparation and implementation. Since the early 
AI research initiated in the 1950s, the use of AI 
benefited from the growing data volumes, algorithms, 
computing power, and storage and has been 
blooming in various areas, from the tools used in 
our daily lives such as personal assistants on our 
smartphones to smart operating systems such as 
self-driving cars. While AI is continuously evolving 
and aiming toward simulating human intelligence for 
a wide range of human-like cognitive tasks, AI today 
can be designed to perform a specifically defined 
narrow task with the possibility of outperforming 
humans. However, different from robotic automation, 
AI is not a direct automation of manual tasks but an 
automation of repetitive and progressive learning 
through data. This allows expert knowledge to be 
transferred into AI models through existing data, 
complementing expert resources in developing 
countries for data collection and processing. From 
various machine learning (ML) algorithms to today’s 
deep learning algorithms, AI is becoming increasingly 
capable of analyzing larger and deeper data, including 
numbers, languages, images, audios, videos, and so 
on. The flexibility in the format of data that AI can 
handle further opens up the possibilities to conduct 
data collection remotely or with the help of the local 
community without a technical background.

While the power and flexibility of AI could 
provide strong support in field data collection, it 
is important for task teams to define necessary 
technical requirements and identify the most 
suitable and sustainable form of data collection. 
As AI learns directly from data, the role of data has 
become more important than ever before. With 
more and better-quality data, AI becomes more 
accurate and reliable in performing particular tasks. 
Also, AI solutions may not be suitable for all types 
of problems and conditions. To efficiently harvest 
the power of AI, several elements need to be 
taken into account to shape a reliable and efficient 
data collection approach in the long term. In this 
note, some key considerations for task teams are 
discussed.



2
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Key Considerations during Inception:  
A Working Backwards Approach

What is the scope of the problem and is AI  
a good candidate to solve the problem?

At the inception stage, task teams have to fully 
understand the scope of the problem, address 
the challenge, and identify the type of solution 
required. A good approach is to ‘work backwards’ 
from the needs of targeted users while ensuring 
that any realized benefits flow down to the end 
beneficiary. Clearly outlining the problem that 
needs to be solved, the users/beneficiaries, and 
the impact sought is critical for identifying the type 
of solution required and defining the appropriate 
use case. Based on the scope of the problem, 
task teams should further evaluate if AI would 
provide a suitable and efficient solution and what AI 
capabilities are called for. Major characteristics of 
the problem that would successfully benefit from  
AI solutions include the following:

	● The difficulties associated with large-scale 
data-related operational efforts. For instance, 
if the problem is to collect detailed information 
about limited cases (for example, 20 cases), 
the development of AI solutions would not be 
beneficial.

	● The information needed from the data is not 
on a case-by-case basis, meaning there are 
standardizable patterns for scalable use cases. 
This also means any labeling effort should not be 
a case-by-case work. For instance, if the problem 
is to collect site-specific details that cannot be 
grouped/clustered, it may not be a good AI use 
case.

	● The size of the data available or accessible is 
sufficient for the training of AI models. Although 
the amount of data needed to train a good AI 
model depends on multiple factors such as the 
complexity of the problem and the model, a 
general rule of thumb is to have at least 10 times 
the amount of training data compared to the 
number of parameters in the model.

	● There is an enabling data regulatory environment 
for the local government to adopt AI solutions, 
considering data security and privacy concerns.

What information is needed and what could 
be the format of the data collected?

Once the scope of the problem is defined and 
identified to be a suitable AI use case, task teams 
must clearly define the scope of the information 

This section discusses some key considerations in a working backwards approach that task teams may have to 
adopt for the inception stage of the project, to utilize AI technology in facilitating field data collection for project 
preparation and implementation. 
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and level of details to be captured in the data to 
ensure that the data collected will meet the needs 
of the project. Also, for AI to drive impact, the 
identified human benefit and user experience must 
be translated into a concrete pattern represented in 
the existing or future collected data. This important 
prework will guide the selection of suitable data 
sources and formats, efficient AI-based methods, 
and data collection methods. The data formats 
that can be handled by AI-based methods include 
number, text, time series, photo, satellite imagery, 
video, and audio, among others. The selection of 
data formats highly depends on the information 
to be extracted. For example, understanding the 
baseline in infrastructure projects usually requires 
engineers to collect visual characteristics of 
structures on the ground with relatively detailed 
resolutions, which leads to potential data formats 
such as photos or videos with the necessary level of 
spatial resolution.

What would be the size of the data needed?

With the format of the data identified, task teams 
need to further understand the data speed and 
size. By doing so, task teams will have an idea 
about how quickly records can be created, how 
much data have to be stored for identifying suitable 
cloud solutions, and how much data preparation 
effort is required (for example, labeling of data). 
For instance, images and videos will require 

much more cloud storage capacity than text and 
numbers. In addition, task teams must understand 
that depending on how much data are available 
and accessible in the short or long term, the 
data collection for developing AI solutions with 
satisfactory performance can be a rather iterative 
and continuous process. This note identifies it as a 
‘learning-by-doing’ process.

How can AI support the workflow?

Knowing the format of the data to be collected 
and the information needed from the data, task 
teams will have to determine the step/s that can 
be supported by AI for improved efficiency. This 
requires teams to identify the part of the workflow 
between inputs (data collected) and outputs 
(information needed) that is usually done by experts. 
Also, task teams need to find a value proposition 
and an ideal output. Listing value propositions can 
help task teams and experts to have a clear idea 
on objectives. For example, AI could support key 
parts of the workflow to limit the need for mobilizing 
experts, thus freeing up their time for higher-
value tasks and reducing logistic costs of projects. 
However, AI solutions help augment, but do not 
replace, human expertise. An AI model may need to 
adapt to unknown scenarios which could be caused 
by changes in time, location, and so on. As a result, 
it will always be necessary to have human experts in 
the loop to supervise AI’s operation. 
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Each AI use case is unique, and several factors 
will drive the required expertise and methodology. 
Those factors include the format and resolution (for 
example, number of different classes) of the inputs 
and outputs, suitable type of AI-based methods, 
algorithms, and the data preparation needs. In 
general, AI-based methods can be categorized 
into supervised learning, semi-supervised learning, 
and unsupervised learning, with decreasing needs 
in data preparation and decreasing maximum 
resolution in the output. If the use case requires the 
classification of only simple and broad clusters with 
obvious and distinct differences to be identified 
from data, both supervised and unsupervised 
learning can be considered depending on the 
project and data context. However, unlike 

supervised learning, unsupervised learning 
leverages unlabeled data to extract features 
and patterns, so that no labeling, and less data 
preparation effort is required. On the other hand, 
when more complicated and detailed classifications 
or predictions are needed, supervised learning 
would be necessary for preparing completely 
labeled training data. Semi-supervised learning is a 
mix of both that is suitable for handling tasks with 
complexity, output resolution, and data preparation 
needs in between. Table 1 briefly identifies these 
main categories of AI-based methods, data 
preparation needs, general types of models, and 
required expertise. In this note, more focus is given 
to supervised learning, aiming to share the lessons 
learned from the GPSS experience.

TABLE 1  Identification of main categories of AI-based methods and algorithm, data preparation needs, 
and expertise

AI-based methods
Data preparation 
needs Types of models Example of use case Expertise needed

Supervised learning Need full training 
data: completely 
labeled (inputs and 
labeled outputs)

	● Classification
	● Regression

Real-time wildfire 
prediction

	● Data science
	● Data engineering
	● Cloud computing
	● Python
	● Tensorflow and 

Keras
	● Convolutional 

Neural Network 
(CNN)

Depending on the 
format of input data, 
the following may 
also be needed:
	● Image processing
	● Geospatial analysis
	● Time series 

analysis

Semi-supervised 
learning

Need partial training 
data: partly labeled 
with rest unlabeled

	● Clustering
	● Association
	● Dimensionality 

reduction
	● Classification
	● Regression

Building footprint 
extraction

Unsupervised learning Do not need training 
data: completely 
unlabeled

	● Clustering
	● Association
	● Dimensionality 

reduction

Using geospatial data 
to cluster land cover 
(for example, water, 
forest)

How should the AI solution be evaluated?

As the AI solution development is usually an 
experimenting and iterative process, it is important 
for task teams to define a single-number evaluation 
metric for the AI model. This will help them compare 
the performance of different models based on this 
metric and choose the best model. With various 
metrics to evaluate the AI model performance, it 

is essential that task teams understand and clearly 
communicate with stakeholders on how the model 
is evaluated and selected. Also, task teams need 
to consider the size of the testing dataset for 
performance evaluation. A larger testing dataset 
will provide more reliable performance evaluation. 
Some common metrics to evaluate AI models for 
classification and regression are discussed.
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For classification

1. Accuracy
This is perhaps the most straightforward metric to 
use and explain – the ratio of number of correct 
predictions to the total number of predictions 
made. However, it works well only if the dataset 
is balanced with the same amount of samples 
per class. Otherwise, it may provide a false 
sense of high accuracy when it is just predicting 
the dominant class (most frequent class) in the 
dataset. Such cases create bias against the 
underrepresented classes.

2. Precision
For imbalanced datasets (one class is much more 
frequent than other classes), class-specific metrics 
are needed. Precision looks at the ratio of true 
positive prediction cases to the total of true positive 
and false positive predictions of each class. It 
evaluates the precision of the model.

3. Recall
Another important metric for imbalanced datasets 
is recall, which is the ratio of true positive prediction 
cases to the total of true positive and false negative 
prediction cases of each class. It evaluates the 
robustness of the model.

4. F1 score
F1 score is the harmonic mean between precision 
and recall, with a range between 0 and 1. It 
evaluates both the precision and robustness of 
the model. A high precision but low recall model 
is accurate when it predicts true positive cases, 
but it misses a large number of cases that are 
difficult to classify. F1 score provides a good overall 
performance metric.

5. Area under curve (AUC) or average precision (AP)
AUC, sometimes called AP, is specifically used 
in binary classification problems. It evaluates the 
probability that the model ranks a random positive 
case higher than a random negative case based on 
the confidence level of prediction. AUC/AP has a 
range between 0 and 1. Higher AUC/AP indicates 
better model performance. When there are multiple 
classes, the performance can be evaluated through 

mean average precision (mAP), which is basically 
the average of the AUC/AP of each class.

For regression

1. Mean squared error (MSE) and root mean squared 
error (RSME)

MSE is perhaps the most commonly used metric 
for regression problems. It evaluates the average 
squared error between predicted and real values. 
It is sometimes used in terms of RSME, which is the 
square root of MSE. The lower the MSE or RSME, 
the better the performance of the model.

2. Mean absolute error (MAE)
MAE evaluates the average absolute difference 
between predicted and real values. It is more robust 
to outliers than MSE.

Can any existing data be used?

As discussed in Table 1, different levels of effort 
would be needed to prepare the data for the AI 
model to learn from. Thus, before collecting any 
new data, it is important to review the existing data, 
make use of the data to prepare the AI component 
in the data collection workflow, and standardize any 
future new data collection. This use of existing data 
for AI model development includes the following:

	● To review and define a systematic structure for 
the input and output for the AI algorithm

	● To identify the needs of data preparation (for 
example, labeling of training data) or collection 
of new data and prepare the data in the defined 
systematic structure

	● To conduct quality control of the data prepared, 
which is fundamental to the performance of the 
AI model

	● To make sure existing datasets have no data 
privacy and bias concerns

	● To check the data governance and security 
components of the existing datasets

	● To develop, train, and test the AI model using the 
prepared data from the existing data

	● To define consistency in the existing data 
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and inform the standardization of future data 
collection compatible with the AI model

	● To monitor the AI model and input data for drift 
once deployed.

For instance, if task teams have previously collected 
field data or existing data received from relevant 
stakeholders (for example, infrastructure inventory 
held by the government) and identified the use 
of field photos together with satellite imagery as 
input for a classification output, it needs to prepare 
the existing data following the same structure and 
format defined for the target AI component in the 
workflow. Such preparation process could include 
cleaning of the data, quality assurance review, 
and necessary preprocessing of the data, which 
usually has to be conducted by data engineers/
scientists and/or geospatial specialists with the 
support of other relevant specialists/engineers. In 
case no existing data are available for the training 
of the AI model, task teams should consider the 
preparation of training data in new data collection 
activities or the generation of synthetic data. Such 
data collection activities typically require intensive 

manual labor to label the data, for which tools 
for capturing and annotating the data need to be 
prepared. Once the AI model is trained and tested 
for satisfactory performance, task teams can deploy 
the AI model in the workflow with standardized and 
compatible data collection activities in the future.

How should the data be collected?

Based on the type of data needed, task teams 
can identify a suitable and efficient individual data 
collection approach or combination compatible 
with the AI model for new data collection activities. 
Table 2 suggests the overall considerations to 
identify the data collection approach. The pros and 
cons of some commonly considered data collection 
approaches that could be paired with AI-based 
support are briefly discussed below. Note that the 
possible sources of data include but are not limited 
to those mentioned below. Technical support 
on sources of data and data-related expertise is 
available within the World Bank, such as from the 
ITS Technology and Innovation Lab (ITSTI) and 
Geospatial Operations Support Team (GOST).

TABLE 2  Overall consideration to identify suitable data collection approaches compatible with AI-based 
methods

Considered 
data collection 
approach Type of data

Technical skills 
required for 
user adoption

Resolution of 
the captured 
information Cost Potential limitations

Satellite imagery Image High High ➞

 
Low

High ➞

 
Free

Coverage availability
Extractable details
Time-consuming ground truthing

UAV Image, video, 
sensor data

Medium High ➞

 
Low

High ➞

 
Low

In-country regulations
Weather limitations
Risks to project operation
Low communication level

Mobile app Image, video, 
number, text

Low High Low Availability of smartphone
Availability of cell phone signal
Potential gender and community 
segmentation 

Social media Image, video, 
number, text

Low Uncertain Low Availability of internet
Reliability and completeness of 
information
Potential gender and community 
segmentation

Sensors and IoT Image, video, 
audio, and 
other digital 
signals

High High Depends Platform fragmentation
Data privacy and security
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	● Satellite imagery

Satellite imagery can be either cost- and time-efficient 
to enable remote data collection or highly expensive 
depending on the required spatial resolution of 
the image and the scale of the data collection. The 
spatial resolution of satellite images can range from 
finer than 1 m per pixel to coarser than 30 m per 
pixel. If the needed level of detailed information from 
the image is relatively coarse – to understand the 
land cover (for example, water, forest, vegetation, 
urbanization) – free satellite imagery sources can 
provide adequate spatial resolution. However, if 
more detailed information is needed (for example, 
plan and elevation dimensions of buildings and other 
characteristics such as health conditions of structures 
at the national level) and the coverage scale is large, 
collecting data using satellite imagery can be fairly 
expensive and extracting the detailed information 
could be challenging. In addition, coverage limitations 
may apply to areas without high-resolution imagery 
or in post-disaster scenarios when imagery is 
needed quickly but is blocked by clouds. Task 
teams should also be aware that ground truthing is 
necessary for using satellite imagery, which can be 
a time-consuming process. Another thing to note is 
that collecting data using satellite imagery requires 
high technical skills in geospatial analysis and the 
engagement of geospatial specialists.

	● Unmanned aerial vehicles (UAVs)

UAVs, or drones, can provide relatively remote 
data collection as they are flexible to operate and 
less affected by time. The data resolution can be 
as fine as 5 cm per pixel, depending on the flying 
altitude. This can be quite helpful in a post-disaster 
context to survey hard-to-reach sites and other 
types of dangerous jobs and reduce the risk of 
a manned solution. UAVs can also collect videos 
or other types of sensor data (for example, Light 
Detection and Ranging, known as LiDAR). The 
cost of data collection using UAVs depends on the 
required spatial resolution of the data. If higher 
spatial resolution is desired, to support the visual 
inspection of infrastructure conditions for instance, 
the flying altitude will be limited and the drone 
pilot will still have to travel to areas near the site 
to ensure the drone stays within the visual line of 

sight, which leads to considerable total cost and 
time. This is to ensure the safety of the people 
and property along the flight path as well as the 
UAV device. A recent UAV experience of the GPSS 
on collecting visual inspection aerial photos of 
school infrastructure indicates an average cost of 
US$890 per school, with a flying altitude of 50 m. 
On the other hand, if the required spatial resolution 
is lower, such as for mapping surveys, the cost-
efficiency can be improved with less mobilization 
of pilots needed and faster coverage of large 
areas. Further, it is worth noting that the potential 
limitations of using UAVs include the regulations in 
different countries on the operation of UAVs (for 
example, regulation on flying altitude and areas), 
non-flying weather conditions, and risks to the 
project operation (for example, damages to UAV 
devices delaying the survey, falling hazards for 
the people and properties along the flight path). 
The operation of UAVs requires skilled pilots or 
training of inexperienced individuals (for example, 
government staff, university students).

	● Mobile applications (apps)

Mobile apps have been widely used in various 
types of data collection. They make a versatile and 
valuable option due to (a) ease of implementation 
with a low requirement on technical skills for user 
adoption; (b) controllable format of the data to be 
collected; (c) flexibility on the information that can 
be collected through a smartphone (from detailed 
specifications to something as simple as taking 
photos); (d) reduced time lag between collecting 
data and analyzing and sharing the data; (e) more 
efficient two-way communication; (f) easier quality 
control than paper solutions; and (g) provision 
of accessibility for illiterate people to participate 
(for example, icon based). The cost of having a 
mobile app can be relatively low or even free using 
existing survey tools on the market. The resolution 
of the data collected through a mobile device 
can be as detailed as high-resolution photos of 
cracks on a wall. However, a relatively remote data 
collection initiative using a mobile app requires good 
participation of local communities in the site area, 
local availability of smartphones, and near-site cell 
phone signal availability. Otherwise, surveyors will 
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still need to be mobilized to collect data on site. 
Another thing to note is that the expertise required 
to manage the digital technology may invite greater 
reliance on external facilitators. Yet lack of uniform 
smartphone access may lead to potential gender 
and community bias which could skew the data.  
Other than smartphones, SMS mobile phones should 
not be discounted as a potential method of data 
collection as that technology may represent the only 
available communication infrastructure in a given 
community. For example, SMS data sources might 
include structured, transactional text messages 
between parties. These could be of significant value 
(for example, SMS-based microfinance) and may 
represent a viable data collection or intervention 
point well suited for AI application depending on the 
preidentified use case. There are existing application 
program interface (API) services to enable two-way 
SMS data feed integration which can help bridge the 
gap between SMS devices, smartphone applications, 
and cloud-based applications.

	● Social media

Social media is another source from which different 
types of information can be collected free of 
charge and accessed remotely. However, such data 
availability requires internet connection, and the 
resolution, completeness, and reliability of the data 
are uncertain. Note that lack of uniform social media 
access may lead to potential gender and community 
bias which could skew the data. Also, the process of 
collecting data from this source will require skilled 
data engineers/scientists to gather, compile, clean, 
and structure data in various formats.

	● Sensors and internet of things (IoT)

With the technology advances in recent decades, 
there has been a significant increase in the use of 
sensors, from monitoring weather (for example, 
humidity, air quality sensors) or infrastructure 
health conditions (for example, deformation, 
vibration sensors) to supporting public security, 
transportation, or smart homes (for example, 
motion, video, and audio sensors). With all these 
differently purposed devices embedded with 
sensors and connected over the internet to 
exchange data, a network of physical objects 

is formed, which is known as IoT. The IoT could 
provide ample and various types of data, 
supporting a wide range of data analytics. However, 
due to the variety of devices that make up the 
IoT, the hardware and software variations lead to 
a lack of interoperability and common technical 
standards in the data. This makes it challenging for 
the data to work consistently between inconsistent 
technology ecosystems, which is known as platform 
fragmentation. In addition, privacy and security 
considerations should be included to adopt IoT 
solutions, as the data collected in the IoT may 
contain details about individual end users of the 
device which can be vulnerable to privacy violation.

In addition to the abovementioned data collection 
methods, another consideration and positive 
factor is the trend toward global deployment of 
cheap and ubiquitous broadband internet via 
satellite connections staged in low earth orbit. 
For instance, SpaceX’s Starlink has launched 895 
Starlink satellites out of a planned 12,000 to date 
and is currently advertising 100 Mbps at US$90 per 
month and US$600 start-up fees for equipment. 
Another example is Amazon’s Project Kuiper, which 
aims to follow suit with a network of an estimated 
3,000 broadband satellites in the coming years. 
These networks can transmit data to and from 
cloud infrastructure where many AI/ML services and 
workloads currently exist. While the affordability 
and adoption rates in the developing world may 
still be unclear, this is a promising trend for opening 
new data collection and communication horizons 
with client countries.

What are the tools and technical support 
needed?

Depending on different priorities and available 
resources, task teams may need different levels 
of effort in developing the AI component with 
associated tools for different types of users and 
scale. Table 3 suggests an example of phased 
approach to achieve AI support in the data 
collection work considering the different priorities 
and needs by use case and user. The note also 
includes annexes on terms of references (ToRs) for 
individual consultants and firms for reference.

POSSIBLE PHOTO HERE
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How to validate and ensure data quality?

As AI learns from data, any mistakes or bias in 
the training data could be introduced in the AI 
component and the results from the AI support 
may not be fully reliable. Therefore, it is important 
for task teams to have a robust quality control 
process for both the data prepared to train the AI 
model and the data processed by it, in which field 
validations may be necessary. This means the AI 
model will by no means replace the important role 
of engineers/specialists in relevant fields; instead, 

human experts and AI need to work together for 
AI to provide successful support and augmentation 
of expert knowledge. Specifically, task teams need 
certain end users/clients/experts to help test the 
output of the AI solutions. In addition, the quality 
control process for the AI component can be an 
opportunity to contribute to the technical capacity 
building for the local communities (for example, 
involvement of local universities and students 
in relevant fields), for which task teams need to 
plan and adjust the capacity-building activities 
accordingly.

TABLE 3  Example of phased approach to achieve AI support in data collection work

Phase
Aim of AI component 
development

Supported users - 
roles User interface Technical support needed

Initial phase: 
feasibility study

The initial base 
development can 
focus on having a 
prototype AI model 
in place to support 
any time-consuming 
and labor-intensive 
post-processing of 
data (for example, 
review of large 
amount of information 
and/or photos for 
classification). This 
is also the initial 
phase to validate the 
performance and 
feasibility of aimed 
AI component in the 
workflow.

Task teams or 
government 
stakeholders – own 
and manage the 
tool; 
Relevant specialists 
or engineers – end 
users.

During this 
phase, a 
complete 
product 
may not be 
necessary, 
and the user 
interface 
can be a 
simple local 
executable 
file or existing 
tools with AI 
capabilities.

During this phase, technical 
support from individual consultants 
in relevant fields, including 
computer science, AI engineering, 
data science, and so on, may be 
adequate.

In addition to consulting support, 
cloud resources are needed for 
initial implementation. Note that 
data security considerations should 
be referred to World Bank ITS.

Scale-up phase: 
preparation for 
implementation

Once the feasibility is 
confirmed in the initial 
phase, the following 
phase can focus 
on having in place 
necessary tools for 
deployment of the AI 
model.

Task team or 
government 
stakeholders – own 
and manage the 
tool; 
Relevant specialists 
or engineers – end 
users for quality 
control; 
Non-technical 
end users for 
data collection 
(for example, 
community, 
government 
stakeholders) – 
end users for data 
collection.

User-friendly 
interfaces are 
needed for 
deployment. 
Depending 
on the use 
case, it can 
be developed 
from existing 
tools with AI 
capabilities.

To develop a complete deployable 
product, task teams may need 
to hire a firm to conduct the 
development and deployment of 
the tool/s in the project’s cloud 
environment. Note that data 
security considerations should be 
referred to World Bank ITS and 
government stakeholders.

In this phase, more emphasis 
should be on ensuring the security 
of the data, performance of 
the model, and integration with 
existing technology.
During implementation, new data 
collected can be aggregated 
as new training data for model 
updating and validation.
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How to set up a sustainable framework  
in the long term?

As discussed earlier, in data preparation, collection, 
processing, and quality control, the development 
and deployment of the AI model to support the 
workflow require multiple considerations from 
task teams. Also, since AI learns from the data it is 
trained on, there will always be the need for it to 
learn and validate new knowledge from new data 
when the scope or context changes. Therefore, 
the development of such AI models is unlikely to 
be a one-time effort in the long term. However, a 
sustainable framework can be established to adapt 
to the changing contexts for task teams to improve 
and benefit from AI support in every data collection 
activity in the long term. This entails having user-

friendly tools (for example, apps, dashboards) and 
reliable workflows in place to streamline those 
associated activities to allow the AI model to learn 
and update progressively. As an example, Figure 1 
shows a conceptual learning-by-doing framework 
with experts in the loop, setting a progressive 
learning cycle for the AI component to improve 
its performance and adapt to different contexts. 
This type of long-term framework will (a) integrate 
expert knowledge in the initial training of the AI 
component, for the design and quality assurance 
of the key input data and (b) have quality control 
conducted by human experts to identify and 
correct potential mistakes, and allow the AI model 
to learn and improve from mistakes in new field 
data collection activities.

FIGURE 1  Example of ‘learning-by-doing’ framework for long-term AI component 
development in data collection workflow
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The timeline and costs for developing AI support for data collection activities depend greatly on the 
technical requirements; the desired resolution (for example, number of different classes) of the output 
information; and the existing resources including training data and a user interface. Therefore, the timeline 
and cost are not a one-size-fits-all scale but rather a case-by-case estimation depending on the specifics of 
a particular project. However, it is possible to understand the timeline and cost implication through major 
influencing factors, which are illustrated in Figure 2 and discussed under this section.
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FIGURE 2  Overview of timeline and cost implications for developing AI support for data collection
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In general, the higher the resolution needed in the 
output information (for example, finer classes in a 
classification problem), the more the training data 
and computing power requirement (for example, 
memory, Graphics Processing Unit (GPU), cloud 
computing), leading to longer time and higher 
cost. In the case of low-resolution requirement 
for the output information, such as a coarse 
classification of land cover (for example, water/
land) from satellite imagery, unsupervised learning 
of AI models can be applied without the need 
to prepare training data, which could indicate a 
shorter time frame (in terms of weeks). On the other 
hand, when high-resolution output information is 
required, such as detailed categories of building 
structural systems or geometric measures of 
building objects, supervised learning of AI models 
is needed, and training data must be prepared in 
terms of annotation or measurement. For preparing 
training data, the time and cost further depend on 
the availability of annotation/measurement data 
from existing datasets. More efforts required in the 

preparation of training data (for example, labeling) 
imply longer time and higher cost. Especially when 
there is a need to collect new data and conduct 
new data labeling for training data, the timeline 
required can be months, including the training 
data collection and preparation and AI component 
development, with cost ranging from thousands 
to hundreds of thousands of dollars. When 
considering the additional design and development 
of user interfaces, such as a mobile app or an online 
dashboard for the deployment of AI support, the 
cost can be even higher. Based on the specific 
needs of the project and feasibility, it is suggested 
that task teams first explore existing interfaces 
with AI capabilities and possible pretrained models, 
instead of developing the whole tool with a user 
interface from scratch. Table 4 lists some indicative 
costs and time ranges under a couple of assumed 
scenarios with high-resolution needs for output 
information (for example, classification of building 
structural types), to give task teams an idea of the 
magnitude of timeline and cost.

TABLE 4  Assumed example scenarios with rough timeline and cost indications

Assumed 
Scenario Training data User interface Team needed Timeline Cost (US$)

A Ready in 
existing data

Able to use/integrate 
with existing tools

Individual 
consultants

10–12
weeks

Several thousands

B New data 
collection

Able to use/integrate 
with existing tools

Individual 
consultants; Firm

3–6
months

Several hundreds of thousands

C New data 
collection

Develop tools from 
scratch

Individual 
consultants; Firm

6 months to 
over a year

Several hundreds of thousands 
and more
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The main risks task teams need to be aware of 
while using AI to support data collection are as 
follows:

	● Potential liability issue induced by the technical 
rigor and quality of the AI-based methods 
as well as the outputs from the AI models. 
As the AI task to be performed is specified by 
task teams, it is important that those clearly 
define the technical rigor and resolution of the 
desired outputs and plan necessary input data 
accordingly. In general, the output results from 
AI-based tools should be used as evidence 
to inform decisions rather than as direct 
recommendations. For example, the use of AI to 
support the identification of building vulnerability 
should be a classification task on building 
structural types to inform the vulnerability 
assessment instead of directly expressing a 
measure of vulnerability. Further, as AI learns 
from the data it has been trained on, it is critical 
for task teams to have adequate supervision 
in place to ensure the quality of the training 
data. Also, it is worth noting that the results 
from AI-based tools always come with potential 
uncertainties due to the nature of AI methods, 

especially when applied under a new context it 
has not been trained on. Therefore, task teams 
must have certain quality controls over the 
outputs from AI support as well as the ability to 
monitor the performance characteristics of the AI 
model on a continuous basis.

	● Data management and security measures 
should comply with the relevant management 
information policy.

	● Adoption by government stakeholders. As the 
task and scope an AI model can handle with 
reliable performance depend on the data it has 
been trained on, clarifications should be given 
to the government stakeholders on the valid 
scope and period for the use of the AI-based 
tool. Also, capacity-building activities or technical 
assistance is needed to support the government 
stakeholders on the use of the tool and to inform 
them on potential updates required (for example, 
retrain the AI model with new data covering a 
new scope, context, or period). 

The main challenge and opportunity presented 
by AI-based tools is that they entail more than 
one-time development: clear communications to 
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4
Risks and Challenges

Although success is seen in many AI applications, the use of AI models is still case specific and contains 
uncertainties. This means that task teams have to themselves identify the most suitable application approach 
tailored for their project needs. This section shares some common risks to be mitigated and challenges to 
overcome in the use of AI to support data collection.
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the stakeholders will facilitate the setting up of a 
long-term framework to benefit from AI solutions. 
Since the AI model learns from the data it has 
been exposed to, its reliability will grow over 
time as more data become available, for which AI 
integration into all relevant field data collection is 
worthwhile. On the other hand, its valid applicable 
scope and period are governed by the training 
data and needs to be updated when applied under 
a new local context. For example, in the case of 

infrastructure, the types and visual characteristics 
can vary from one country to another, or from 
decades ago to now, which makes it necessary to 
have the learning cycle proposed in this note to 
allow the AI model to adapt accordingly. In all cases, 
it will be essential that the AI-enabled solution has 
the ability to seamlessly integrate new labeled 
datapoints into the training set, allowing for the 
training and improvement of the model. 
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This section shares a case study with relatively high-resolution requirements, to illustrate the journey of a 
task team to develop AI support for data collection activities. It originates from an ongoing GPSS school 
infrastructure project ‘Enhancing Resilience in Kyrgyzstan’ (ERIK) with the objective of improving the seismic 
safety and functional conditions of school facilities in the Kyrgyz Republic. 

5
Case Study

To inform an efficient seismic risk reduction 
intervention strategy and investment plan at scale, 
field inspection campaigns at the national level 
covering over 2,000 schools and preschools were 
conducted to gather necessary school infrastructure 
baseline and inventory information. Some lessons 
learned during the process as well as past large-
scale field inspection activities like the ones 
discussed below motivated the task team to seek AI 
support in similar field data collection activities:

	● The assurance of data quality with limited local 
technical capacity requires considerable time 
and resources. In such cases, the training of local 
teams over a limited time frame is not sufficient 
and data quality control by local teams would 
require multiple revisions. This is especially true 
with large-scale data collection at the national 
level. In the ERIK field inspection campaign, over 
30 percent of the resources were allocated 
toward such quality assurance efforts. These 
additional quality assurance activities caused the 
project timeline to double.

	● Weather and transportation difficulties pose 
further time delay and additional costs in 

field data collection activities, for example, 
mountainous remote areas and unforeseen 
extreme snow. This also applies to the current 
travel restrictions induced by the global 
pandemic, which has caused an early halt of the 
field inspection campaign and left more than 
40 percent of the national public schools and 
preschools uninspected.

To address these challenges, the task team started 
developing AI support in similar field data collection 
activities to meet the following objectives:

	● Set up a sustainable framework to develop AI-
based tool learning from field photos to enable 
growing support from the AI-based tool over time.

	● Allow the AI-based tool to transfer the 
knowledge from experts to non-technical users, 
compensating shortage of experts with desired 
technical capacity.

	● Use AI-supported field data collection to facilitate 
community engagement and capacity building. 
An AI-based tool could empower non-technical 
school communities to be part of the effort to 
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make their schools safer and more resilient with 
a better understanding of the government’s 
decision-making process. Also, it could provide 
open access for engineering students to learn 
and practice with the expert knowledge carried 
by the AI-based tool on the structural typologies 
of school buildings and understand the 
implication for associated vulnerabilities.

	● Standardize and streamline data collection, 
mitigating data quality issues. Since no judgment 
needs to be made by the user who collects data 
(that is, photos), the data collection can be easily 

standardized and streamlined, with the quality of 
the assessment through AI support and remote 
supervision and quality control from experts.

	● Reduce the need for mobilization and travel 
of engineers, improving project efficiency and 
continuity under any travel limitations, especially 
considering the ongoing global pandemic.

With the objectives discussed above, the specific 
considerations of working backwards are 
summarized in Table 5, followed by conceptual and 
proof-of-concept results, and lessons learned.

TABLE 5  Case study: Specific considerations of working backwards

Key considerations of working 
backwards Specifications in the case study

What is the scope of the problem and 
is AI a good candidate to solve the 
problem?

The current practice of school infrastructure baseline data collection 
requires the mobilization of a large number of local engineers in the field 
and considerable effort in quality control work, which is susceptible to travel 
restrictions due to conditions such as snow constraints during winter and 
the ongoing global pandemic. Since the school infrastructure baseline data 
are collected for building types following a systematic visual classification 
methodology that is scalable, AI solutions are identified to have high potential 
to address this challenge by reducing the need for field mobilization and time 
delay risks.

What information is needed and 
what could be the format of the data 
collected? 

As the evaluation of the school infrastructure baseline at scale is a classification 
problem based on visual characteristics of the school building to identify 
structural system typologies (that is, structural taxonomy), visual structural 
characteristics need to be collected and images can be the format of the data.

What would be the size of the data 
needed?

Since the targeted AI solution will be a classifier based on photos and there are 
already photos collected in the recent field inspections, the task team starts 
with a total size of about 18 GB of photos. The collected photos are stored in 
cloud services with accessible API for constructing a data pipeline for the AI 
model. The cloud service is directly linked with the field data collection mobile 
app, which would facilitate the iterative and long-term improvement of the AI 
model with new data being collected.

How can AI support the workflow? Desired AI support should enable the end data collection to be deployed by 
local non-technical communities (for example, school staff, students) to reduce 
the need for mobilization of experts and improve efficiency.

How should the AI solution be 
evaluated?

To understand how the AI model performs on classifying the school building 
type parameters, the initial metric selected by the task team was accuracy. 
However, after experimenting with existing data and the model, the task team 
learned that the dataset is imbalanced especially for some of the structural 
taxonomy parameters, which led to consider other metrics such as precision, 
recall, and AUC/AP.

Can any existing data be used? Photos collected in past field inspections of school infrastructure covering the 
similar structural types can be used to initiate the training of the AI support. 
Proof-of-concept AI model results are discussed below and in Table 6.

How should the data be collected? As visual details are needed for both external and internal features of school 
buildings, photos collected through a mobile app provide the best flexibility 
and cost-efficiency to meet the needs. As a result, satellite imagery and drone 
data collection approaches are not considered here.
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Proof-of-concept: Image-based GLOSI 
structural taxonomy classification

Based on the structural taxonomy classification 
defined under the Global Library of School 
Infrastructure (GLOSI)1 and photos collected and 
annotated in past field inspections in Nepal after 
the 2015 earthquake, an initial prototype AI model 
was trained and evaluated, as specified in Table 
6, with output covering the classification of three 
main structural taxonomy parameters. Further, with 
the recent photos collected in the field inspection 
campaign in the Kyrgyz Republic, the model was 
adjusted and retrained to adapt to the local context 
of building type classifications. This initial and 
adjusted prototype model was developed under the 
collaboration of the GPSS, Digital Transformation 
Hub (DxHub), and California Polytechnic State 
University (CalPoly).

It can be seen from Table 6 that the initial prototype 
model provides relatively good classification 
accuracy for the taxonomy parameters with 
relatively coarse classes, while the parameter with 
much finer classes (that is, main structural system) 
has the lowest model prediction accuracy over the 
testing data. This is because (a) only a single façade 

1 Global Library of School Infrastructure

photo is available per school building from the 
existing data, lacking necessary features captured 
in the photo to support the classification of the 
main structural system, and (b) finer classifications 
lead to higher demand on the amount and 
captured features of the input data. This clearly 
indicates the need to further train the model with 
more and better photos and to tailor future field 
data collection to gather photos capturing more 
structural features (for example, both external 
and internal photos of the building). However, 
the prototype model sets an initial base for the 
integration of AI support in the data collection 
workflow for school infrastructure.

With the recent data available from the field 
inspection campaign conducted in the Kyrgyz 
Republic, the prototype model has been adjusted to 
a multi-input model instead of the initial single-input 
model, and to adapt to the new local context. The 
aim was to include important external and internal 
features of the building for the AI model to learn 
from. The input for the adjusted model includes four 
building side images and four internal diaphragm 
images. Table 6 demonstrates an improvement of 
the adjusted model in the prediction accuracy of 
the building category from 81 to 86 percent. 

Key considerations of working 
backwards Specifications in the case study

What are the tools and technical 
support needed? 

To allow the AI-based tool to be deployable by non-technical communities, 
both the AI model and the tool interface must be developed. This requires 
technical support from AI engineers and IT front-end developers as well as 
guidance from structural engineers on the classification of structural types 
for the preparation of training data and quality control of the outputs from 
the AI model. A phased approach can be planned to prioritize the model 
development and integration with existing tool interfaces, followed by tailored 
user interface at a later stage. A proof-of-concept user interface design is 
illustrated in Figures 3-4 and discussed below.

How to validate and ensure data 
quality? 

Robust quality assurance and quality control processes conducted by experts 
should be included in the data collection workflow. If needed, additional field 
validation may apply. An online platform can be set up for remote quality 
assurance and quality control in the workflow, as shown in Figure 5.

How to set up a sustainable 
framework in the long term? 

A conceptual ‘learning-by-doing’ framework for the data collection workflow is 
illustrated in Figure 5.

https://gpss.worldbank.org/en/GLOSI
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TABLE 6  Case study: Proof-of-concept prototype AI model

Prototype 
model

Existing data used to train/
retrain the prototype AI model AI method and base model

Building 
category

Main 
structural 
system

Height 
range

Initial 
single input 
model2

About 18,000 school building 
façade photos, collected 
in Nepal after the 2015 
earthquake.
Training data: 85% 
Testing data: 15%

Convolutional neural 
networks; transfer 
learning.

Xception/
InceptionResnetV2 
via Python 
Tensorflow Keras

Model 
output 4 classes 16 classes 6 classes

Accuracy 
(testing) 81% 67% 95%

Adjusted 
multi-input 
model3

Over 16,000 photos capturing 
both external and internal 
building features, collected in 
the Kyrgyz Republic in early 
2020.
Training data: 85%
Testing data: 15%

Model 
output 5 classes 12 classes 4 classes

Accuracy 
(testing) 86% 43% 72%

2 “School Safety Project” Documentation
3 “Making Schools Safer and Resilient at Scale in Kyrgyzstan” Project Documentation

However, the prediction accuracy of the main 
structural system and height range decreased. 
During the model experiments and evaluation, 
the task team identified that the Kyrgyz dataset is 
heavily imbalanced, with some underrepresented 
classes as low as 3 percent of the dataset. To 
address this, data augmentation and weighted 
losses during training were applied to those 
underrepresented classes. However, in this case, 
the accuracy would not be a suitable evaluation 
metric and the model versions are not comparable 
using the accuracy metric. As the AI solution 
development is an iterative and long-term process, 
the task team identified future work to improve and 
evaluate the model using metrics more suitable for 
an imbalanced dataset, such as AUC/AP.

Proof-of-concept: user interface design

To enable the engagement of non-technical local 
communities in data collection and reduce the need 
for mobilizing engineers, an intuitive and user-
friendly interface is required to ensure key input 
data are captured in the photos collected,  
following desired standards. Figure 3 shows the 
conceptual user interface of a mobile app designed 
under the collaboration of the GPSS, DxHub, and 

CalPoly to collect necessary photos for structural 
classification purposes. It includes an easy-to-follow 
tutorial with clear examples of the type of photos to 
be taken, an AI autodetection function to support 
the identification of key features to be captured 
through camera, and a concise report of the AI-
identified structural typology suggestion. This will 
facilitate the engagement of local non-technical 
communities in the data collection process through 
an easy-to-use interface, potentially including 
students from those schools. Note that the targeted 
non-technical users will only take relevant photos 
following the guidance but will not label the data. 
The labeling through the interface is designed to 
be provided by the AI model in the back end, and 
it is still necessary to have experts in the loop for 
remote quality control of the labeling. Additionally, 
a simple interface will not compromise the technical 
rigor of the AI model, which can also be used to 
support local capacity building for engineers and 
students. Figure 4 presents the results from  
a survey conducted among CalPoly students to 
evaluate the suitability of the interface design for 
the age groups of 7–10 years, 11–14 years, and 
15–18 years, who would be able to use such a 
data collection interface. The results indicate the 
potential for the school community to engage.

https://dxhub-static.calpoly.edu/wp-content/uploads/2020/10/27051349/580Paper.pdf
https://dxhub-static.calpoly.edu/wp-content/uploads/2021/01/13201257/480Paper.pdf
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FIGURE 3  Conceptual user interface design4
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FIGURE 4   Survey results on the suitable age groups for the user interface design4
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https://dxhub-static.calpoly.edu/wp-content/uploads/2020/10/27051350/486Paper.pdf
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Conceptual ‘learning-by-doing’ AI-supported 
data collection workflow

A conceptual data collection workflow is proposed, 
as shown in Figure 5, to enable a progressive 
learning cycle in the long term for the AI-based tool 
with remote interventions of experts. It proposes 
that end data collection be functional both offline 
and online (that is, data can be recorded offline 
and synced once online), to allow simultaneous 
data inputs from school communities in different 
areas through the mobile app. With input data 
synced online, the AI model will be able to provide 

structural taxonomy classification suggestions. 
Further, with an online quality control and quality 
assurance (QA/QC) platform, experts will be able 
to sample and review the classification results from 
the AI model remotely and provide corrections 
as needed. If deemed necessary, further field 
validation may be considered. Such corrected 
classification will then be used to further train the AI 
model to improve its performance. This expert-in-
the-loop approach will particularly be necessary in 
the context to which the AI model has not yet been 
exposed. After this QA/QC process, the structural 
classification results can be finalized to support 

FIGURE 5   Conceptual learning-by-doing AI-supported data collection workflow 
for school infrastructure baseline data collection
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the further vulnerability assessment of school 
infrastructure portfolio and inform large-scale risk 
reduction strategies. With the proposed workflow 
followed in similar data collection activities, it is 
expected that the AI-based tool will be improved 
over time through a learning-by-doing process.

With this proposed AI-supported data collection 
workflow, based on the GPSS’s recent field data 
collection experience in the Kyrgyz Republic, a 
potential reduction of more than 50 percent of the 
assessment time and the overall cost is projected, 
assuming school communities are successfully 

engaged in the data collection. Time and cost 
efficiency could vary depending on how smooth 
the engagement of the school community is in the 
specific local context.

Lessons learned

With the ongoing iterative development of the 
GPSS’s AI solution for the structural taxonomy 
classification of school buildings, some key lessons 
learned from the case study can be shared 
with task teams seeking AI solutions to address 
challenges in data collection for project preparation 
and implementation:

	● Development of AI solutions supporting data collection is more an 

iterative learning-by-doing process than a one-time effort.

	● Setting up a ‘learning-by-doing’ framework for iterative long-term 

development and improvement with experts in the loop to monitor the 

performance of the AI solution is essential for AI solutions to be adaptive 

and reliable.

	● Consistency in the format and structure of relevant data collections is 

necessary to avoid fragmentation in the accumulation of training data 

and to allow an iterative and long-term improvement of the AI solution.

	● It is important to identify any imbalance or bias in the dataset that needs 

to be addressed.

	● Setting up a suitable evaluation metric is critical to guide the selection 

and improvement of the AI model.

	● Accurately communicating the model’s performance (in terms of 

capabilities and limitations) with stakeholders will facilitate the adoption 

of the solution.



1. Background

With an estimated 875 million children exposed 
to earthquakes and typhoons worldwide, there 
is an urgent need to provide safer and resilient 
school infrastructure for children to develop 
their full potential. To address this issue, the 
World Bank’s Global Program for Safer Schools 
(GPSS) is supporting developing countries in 
the design and implementation of large-scale 
investments to improve the safety and resilience 
of school infrastructure and the quality of learning 
environments.

One of the biggest challenges of this program in 
developing countries is the lack of high-quality data 
about school building inventory and the absence 
of efficient mechanisms to update and manage this 
information. The data collection process to assess 
school infrastructure is commonly done through 
field inspections conducted by engineers, which 
are usually costly and time-consuming. Therefore, 
innovative and more efficient approaches to collect 
baseline data are essential to strengthen the 
capacity of developing countries in scaling up safer 
schools activities.

To facilitate the development of high-quality school 
infrastructure baselines at scale, the GPSS has 
developed a strong underlying tool—the Global 
Library of School Infrastructure (GLOSI). It provides 
a global catalog of classified structural typologies 
of school buildings with vulnerability curves and 
scalable vulnerability reduction solutions. This 
classification is performed at a building level and 
consists of parameters like the structural system, 
number of stories, irregularities of the building, 
among other structural parameters, which 
influence the performance of the building during an 
earthquake.

Along this line, building upon GLOSI, the GPSS 
will develop AI-based tools to facilitate more 
cost-efficient school infrastructure baseline data 
collection, with the aim of leveraging efforts and 
engagement from school communities contributing 
to the planning of risk reduction interventions. 

Sample STC ToR for Developing an AI-based 
Tool for Infrastructure Baseline Data Collection

1ANNEX
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3. Activities and timeline

Activity

Week

1 2 3 4 5 6 7 8 9 10

1
Review current AI classifier prototype model and 
existing country data

2 Set up data pipeline and cloud computing 

3 Prepare training data

4
Improve current AI model meeting latest data 
structure and train with latest data

5
Review results and identify improvement needs with 
the task team

4 Conduct necessary model improvements

5 Integrate model with existing ArcGIS dashboard

6 Deliver preliminary results 

7 Task team final review and feedback

8
Deliver final AI model and integrated online 
dashboard

2. Scope of tasks

The selected candidate will participate and 
contribute to activities such as:

	● Development and improvement of ML/AI 
algorithm for classification of structural typology 
parameters for school buildings based on photos 
from existing data

	● Preparation of school infrastructure baseline data 
for ML/AI

	● Development and deployment of end-to-end 
data pipelines

	● Integration of ML/AI model with existing ArcGIS 
dashboards

	● Online research on image-based ML/AI methods/
tools as needed

	● Familiarization with basic concepts such as risk, 
hazard, exposure, vulnerability, and disaster risk 
management

	● Learning from technical discussions within task 
team and with partner teams on ongoing safer 
schools projects

	● Support for the preparation of reports and 
presentations.
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4. Key competencies

	● Bachelor’s degree or Master’s degree (preferred) 
in data science, computer science, or related field

	● Proven experience with ML/AI algorithms and 
techniques, specifically CNNs using frameworks 
such as Tensorflow and Keras

	● Minimum of one year experience with programming 
languages such as Python using data science 
libraries (NumPy, SciPy, Pandas, and so on) and 
analytics suites such as Jupyter Notebook

	● Minimum of one year Extract Transform Load 
(ETL) or data pipeline engineering experience

	● Minimum of one year experience in image 
processing

	● Minimum of one year cloud computing 
experience

	● Professional interest in utilizing disruptive 
technology to support international development

	● Excellent analytical skills and a passion for 
learning

	● Excellent communication skills in written and 
spoken English.
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1. Background

With an estimated 875 million children exposed 
to earthquakes and typhoons worldwide, there 
is an urgent need to provide safer and resilient 
school infrastructure for children to develop 
their full potential. To address this issue, the 
World Bank’s Global Program for Safer Schools 
(GPSS) is supporting developing countries in 
the design and implementation of large-scale 
investments to improve the safety and resilience 
of school infrastructure and the quality of learning 
environments.

One of the biggest challenges of this program in 
developing countries is the lack of high-quality data 
about school building inventory and the absence 
of efficient mechanisms to update and manage this 
information. The data collection process to assess 
school infrastructure is commonly done through 
field inspections conducted by engineers, which 
are usually costly and time-consuming. Therefore, 
innovative and more efficient approaches to collect 
baseline data are essential to strengthen the 
capacity of developing countries in scaling up safer 
schools activities.

To facilitate the development of high-quality school 
infrastructure baselines at scale, the GPSS has 
developed a strong underlying tool—the Global 
Library of School Infrastructure (GLOSI). It provides 
a global catalog of classified structural typologies 
of school buildings with vulnerability curves and 
scalable vulnerability reduction solutions. This 
classification is performed at a building level and 
consists of parameters like the structural system, 
number of stories, irregularities of the building, among 
other structural parameters, which influence the 
performance of the building during an earthquake.

Along this line, building upon GLOSI, the GPSS 
will develop AI-based tools to facilitate more 
cost-efficient school infrastructure baseline data 
collection, with the aim of leveraging efforts and 
engagement from school communities contributing 
to the planning of risk reduction interventions.

Sample Firm ToR for Developing an AI-based 
Tool for Infrastructure Baseline Data Collection

2ANNEX
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3. Scope of work

The development of the ML/AI model should 
be based on the structural classification system 
defined by the GLOSI, compatible with existing 
GPSS data collection strategies and tools, and 
based on discussions with the GPSS team. Expected 
activities are discussed below. 

3.1 Inception meeting

The meeting will be held by video conference 
with team members and key members of the 
World Bank task team, and they will discuss the 
project background, requirements, workplan, and 
deliverables. 

3.2 Desktop review

	● Review the existing prototype ML/AI model, 
existing photo data provided by the World Bank 
task team, and existing GPSS data collection 
mobile app and online dashboards.

	● Identify data preparation needs in discussion with 
the World Bank task team.

	● Identify security, compliance, and reporting 
requirements for implementation of AI/ML model 
in a production setting.

3.3 Data preparation

	● Establish and implement data pipeline.

	● Establish cloud computing resources for the data 
pipeline, AI/ML model, model monitoring, and 
necessary security controls.

	● Develop any necessary databases or data 
repositories for model inputs and outputs and 
underlying geospatial data.

	● Conduct necessary data cleaning, compiling, and 
structuring to prepare training data.

3.4 Model development

	● Develop the ML/AI classification model based on 
the GLOSI structural classification system and 
photo data provided by the World Bank task 
team.

	● Define model performance characteristics (for 
example, expectations for precision, accuracy, 
and recall) and process for monitoring, 
measuring, and reporting.

	● Review model performance and identify 
improvement needs with the World Bank task 
team.

	● Improve the ML/AI model performance to meet 
a satisfactory level for two to five key GLOSI 
classification parameters in discussion with the 
World Bank task team.

3.5 Model deployment

	● Integrate the developed ML/AI model with the 
existing GPSS mobile app for data collection.

	● Integrate the developed ML/AI model with the 
existing GPSS quality assurance and quality 
control online dashboard.

2. Objective

The specific objectives of this work include the 
following:

	● Develop an ML/AI model for the classification of 
two to five major structural typology parameters 
for school buildings based on multiple photos 
per building, with a satisfactory performance in 
discussion with the World Bank task team.

	● Integrate the ML/AI model with the Survey123 
mobile app and ArcGIS online dashboard or web 
application for deployment.

	● Establish retraining and model updating 
mechanism for the ML/AI model from new photo 
data collected through the Survey123 mobile app.
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4. Deliverables

The deliverables for this project will be the 
following:

	● An ML/AI classification model for two to five 
key GLOSI structural typology parameters for 
school buildings with satisfactory performance in 
discussion with the World Bank task team

	● An improved GPSS mobile app for data collection 
with the ML/AI model integrated, with a feedback 
loop for model retraining/updating

	● An improved GPSS quality assurance and 
quality control dashboard with the ML/AI model 
integrated, with a feedback loop for model 
retraining/updating

	● A report on the development of the model and 
tools, including but not limited to methodology, 
results, limitations, and recommendations.

	● Set up a feedback loop between the ML/AI 
model and the GPSS mobile app and dashboard 
for model retraining/updating upon new photos 
collected through the app.

	● Support the World Bank task team on issues 
related to the deployment of the developed tools.

3.6 Training and dissemination

	● Deliver a training and dissemination workshop 
with the World Bank task team and relevant 
stakeholders on the use of the developed tools.

5. Tentative time frame

Activity

Month

Payment terms1 2 3 4 5 6

1 Inception meeting 10% upon commencement of the services

2 Desktop review

3 Data preparation

4 Model development
30% upon submission and the World Bank 
acceptance of the model

5 Model deployment
30% upon submission and the World Bank 
acceptance of the integrated tools

6 Training and dissemination

7 Final report
30% upon submission and the World Bank 
acceptance of the final version of the report
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6. Qualifications

General

The firm should be able to: 

	● Demonstrate experience in data science 
and software development, including the 
development of AI-based tools.

Specific qualifications

Team Leader

	● Master’s and/or doctorate degree in data 
science, computer science, or related field

	● Minimum of five years of professional experience 
in data science and/or ML/AI development

	● Experience with international organizations and/
or governments

	● Experience with Python or similar programming 
language

	● Experience with ArcGIS tools (preferred)

	● Experience with deploying ML/AI solutions, 
data pipelines, and web applications in cloud 
environments.

Project Manager

	● Master’s degree in data science, computer 
science, or related field

	● Minimum of three years of professional 
experience in data science and/or ML/AI 
development

	● Proven ability to work with international 
organizations, national governments, or 
nongovernmental organizations

	● Experience in managing software development 
projects

	● Experience with ArcGIS tools (preferred).
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